Existence of Solutions for Semilinear Elliptic Problems without (ps) Condition
نویسندگان
چکیده
We establish an existence result for semilinear elliptic problems with the associated functional not satisfying the Palais-Smale condition. The nonlinearity of our problem does not satisfy the Ambrosetti-Rabinowitz condition.
منابع مشابه
Existence and multiplicity of positive solutions for a class of semilinear elliptic system with nonlinear boundary conditions
This study concerns the existence and multiplicity of positive weak solutions for a class of semilinear elliptic systems with nonlinear boundary conditions. Our results is depending on the local minimization method on the Nehari manifold and some variational techniques. Also, by using Mountain Pass Lemma, we establish the existence of at least one solution with positive energy.
متن کاملRenormalized Solutions for Strongly Nonlinear Elliptic Problems with Lower Order Terms and Measure Data in Orlicz-Sobolev Spaces
The purpose of this paper is to prove the existence of a renormalized solution of perturbed elliptic problems$ -operatorname{div}Big(a(x,u,nabla u)+Phi(u) Big)+ g(x,u,nabla u) = mumbox{ in }Omega, $ in the framework of Orlicz-Sobolev spaces without any restriction on the $M$ N-function of the Orlicz spaces, where $-operatorname{div}Big(a(x,u,nabla u)Big)$ is a Leray-Lions operator defined f...
متن کاملExistence and multiplicity of nontrivial solutions for double resonance semilinear elliptic problems
We consider resonance problems at an arbitrary eigenvalue of the Laplacien. We prove the existence of nontrivial solutions for some semilinear elliptic Dirichlet boundary values problems. We also obtain two nontrivial solutions by using Morse theory.
متن کاملExistence and Uniqueness of Solutions to a Semilinear Elliptic System
In this article, we show the existence and uniqueness of smooth solutions for boundary-value problems of semilinear elliptic systems.
متن کاملMultiple Solutions For Semilinear Elliptic Boundary Value Problems At Resonance
In recent years several nonlinear techniques have been very successful in proving the existence of weak solutions for semilinear elliptic boundary value problems at resonance. One technique involves a variational approach where solutions are characterized as saddle points for a related functional. This argument requires that the Palais-Smale condition and some coercivity conditions are satisfie...
متن کامل